*

『人工知能は人間を超えるか』を読んで、人工知能の基本のキを学ぶ

公開日: : 最終更新日:2016/10/16 人工知能, , , , , ,

 

 

最近よく「人工知能」(Artificial Intelligence; AI)という言葉を聞きます。

 

人工知能によって、業務が効率化できるとか、生活が便利になるとか、あたかもあらゆる問題が解決するような万能な感じで言われており、いつの間にそんな世界になったんだろうと、驚いてます。

そういえば、フェイスブックのマーク・ザッカーバーグの今年の目標は個人用の人工知能を作ることでした。

私も簡単なSiriみたいなヤツを作ろうかなと思っています。

 

しかし、人工知能って言葉をよく聞くけど、実際はよくわかっていませんので、人工知能についての本を読んでみました。

平易な言葉で人工知能について解説されており、私のような文系のオッサンでも普通に読めましたので、基本のキを知るには、オススメの本です。

 

「人工知能は人間を超えるか」

 

B00UAAK07S 人工知能は人間を超えるか (角川EPUB選書)
松尾 豊
KADOKAWA / 中経出版 2015-03-10

by G-Tools

 

 

人工知能について報道されているニュースや出来事の中には、「本当にすごいこと」と「実はそんなにすごくないこと」が混ざり、「すでに実現したこと」と「もうすぐ実現しそうなこと」と「実現しそうもないこと(夢物語)」もごっちゃになっているので、私のような一般庶民は誤解しているのが実情です。

 

私を含めて多くの人が認識相違していることですが、

人工知能は現在、まだできていません。

これ重要です。 

 

ペッパーくん、Siri

 

これらは、人工知能ではありません。

自分で考えて受け答えをしているわけではなく、なんらかのアルゴリズムに基づいたプログラムの指示で大量のデータを高速で処理しているだけです。

(「だけ」というと語弊がありますが。。。)

 

極端な例えでいうと、

プログラミング言語でいうIF文のようなものです。

 

If  (A == “How do you do?”)  { printf “Fine thank you and you?”};

もし、”How do do?” なら “Fine thank you and you?” と答えなさい。

 

 

さて、人工知能でといえば、よく聞く言葉が、機械学習とディープラーニングです。

 

私の備忘録として、以下に綴ります。

(認識相違のところがあったらご指摘ください)

 

 

まずは、機械学習について

 

機械学習というのは、サンプルとなるデータをもとに、ルールや知識を自ら学習します。

検索エンジンやビッグデータ分析などに使われています。

 

たとえば、ネコについて機械に学習させるとします。

大量のネコの画像をコンピュータに見せると、コンピュータはそこから一定のパターンやルールを抽出します。

コンピュータは、こういう特徴があるものが「ネコ」なんだと学習します。

次からはネコの画像を見た瞬間、「これはネコだ」と瞬時に見分けられるようになるのです。

しかし、その結果は100%合致はしないので、抽出されたパターンやルールに対して、変数や係数の重み付けを人間が調整します。

この重み付けのことを「特徴量」といい、機械学習の精度を上げるのは、「どんな特徴量を入れるか」にかかっていますが、あくまでも特徴量を考えるのは人間です。

人工知能が実現しない理由は、「世界からどの特徴に注目して情報を取り出すべきか」に関して、人間の手を借りなければならないからです。

 

 

そして、人工知能研究の可能性を大きく切り開いたブレークスルーが起きました。

ディープラーニングです。

  

ディープラーニングは、人間が特徴量を設計するのではなく、コンピュータが自ら特徴量をつくり出します。

 

たとえば、たくさんの動物の画像をコンピュータに見せるとします。

ディープラーニングを用いると、コンピュータは自分で特徴量を見つけ、たくさんの動物の画像から、ネコ、イヌ、といった概念を獲得します。

その概念に対して人間が「これがネコだ」「これがイヌだ」という記号をあてはめます。

次回からは、ネコやイヌの画像を見ただけで。「これはネコだ」「これはイヌだ」と判断することができるのです。

 

ディープラーニングは人間の脳の仕組みからヒントを得てます。

ニューラルネットワークに自己符号化器(オートエンコーダー)を用いることや、頑健な特徴量や概念を見つけるために、わざわざ過酷な環境を作り出すこと(ノイズ、ドロップアウト)など、興味深いことが満載です。

 

詳しくは本書で。

 

とはいえ、素人目に見ると、結局、最後は人間の手を借りるからダメじゃんと思うかもしれませんが、機械が自分で特徴量を見つけるというのは、人工知能研究では大きなブレイクスルーでした。ディープラーニングにより、人工知能研究は大きく飛躍し、最近の人工知能ブームにつながったのです。

そして、2045年問題(シンギュラリティ)が現実的なものとして議論されるようになりました。

映画「ターミネーター」のように人類の脅威になるのではないかと真剣に議論されています。

 

しかし、本書によると、シンギュラリティで議論されているような「真に自己を設計できる人工知能」の実現は遠く、現在のところ、その糸口さえもつかめていないそうですので、とりあえず安心してください。

 

 

ディープラーニングで大きく前進した人工知能です。

人工知能には、無限のフロンティアが広がっています。

我が国の産業は20年ほど停滞がつづき、シリコンバレーの遥か後塵を拝していますが、我が国は人工知能の人材は豊富で日本復活のカギを握っていると言われています。

 

人工知能の動向に注目です。

 

 

 

ad

    この記事が気に入りましたら、ぜひTwitter、facebookボタンをお願いします。
    ブログを書くモチベーションになります。よろしくお願いします。

  • このエントリーをはてなブックマークに追加
この記事が良かったらビットコインで寄付をお願いします。
ビットコイン投げ銭ウィジェット



関連記事

no image

効率が10倍アップする新・知的生産術 ー自分をグーグル化する方法

おかげさまで、ブログを始めて4年半で、本についての記事が今回で200回目となりました。 1週間に1エ

記事を読む

no image

超三流主義

著者の金子哲雄さんは、 たかじんの「そこまで言って委員会」で、初めて見て衝撃を受けました。 ぱっと

記事を読む

no image

イノベーションのジレンマ

超有名なこの本を今更ながら初めて読んだ。 本書は1997年米国発売、2001年日本語訳版と10年以

記事を読む

ブーメラン 〜欧州から恐慌が返ってくる

昔からよく言われる。 日本人は働き過ぎって。 満員電車に揺られて、睡眠不足、ノイローゼ1歩手前。

記事を読む

素人のオッサンが自分の分身の人工知能「AIたつや」を作るシリーズ(その3:LINE登録)

    IBM BluemixとRuby on Railsで作る人工知能ボットシリーズ第3回目です。

記事を読む

ad

Message

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

ad

お勉強がてらブロックチェーンについてワンペーパーでまとめてみた

    最近、職場でデジタルに詳しいと勘違いされているTatsuyaで

【備忘録メモ】TensorFlow実行環境構築(Win10)

自分用メモとして、TensorFlowの実行環境の構築手順を残す。  

【備忘録メモ】深圳SiPEED社のAIoT開発ボードMAiX BiTの顔検出のデモを試してみた(Mac)

    昨日妻が東京に旅行に行ったとき、秋葉原のShigezoneと

G20福岡のプレイベントのデジタルビジネスアイデアソンに参加

    先週6月2日、G20福岡のプレイベントのデジタルビジネスアイデ

山形をブラタツヤ

  5月下旬に山形に行ってきました。 人生初山形!!        

→もっと見る

    • 599783総閲覧数:
    • 967今日の閲覧数:
    • 1683昨日の閲覧数:
    • 8現在オンライン中の人数:
    • 2014年4月29日カウント開始日:
PAGE TOP ↑